skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stebe, Kathleen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. Understanding the dynamics of polymers in confined environments is pivotal for diverse applications ranging from polymer upcycling to bioseparations. In this study, we develop an entropic barrier model using self-consistent field theory that considers the effect of attractive surface interactions, solvation, and confinement on polymer kinetics. In this model, we consider the translocation of a polymer from one cavity into a second cavity through a single-segment-width nanopore. We find that, for a polymer in a good solvent (i.e., excluded volume, u0 > 0), there is a nonmonotonic dependence of mean translocation time (τ) on surface interaction strength, ɛ. At low ɛ, excluded volume interactions lead to an energetic penalty and longer translocation times. As ɛ increases, the surface interactions counteract the energetic penalty imposed by excluded volume and the polymer translocates faster through the nanopore. However, as ɛ continues to increase, an adsorption transition occurs, which leads to significantly slower kinetics due to the penalty of desorption from the first cavity. The ɛ at which this adsorption transition occurs is a function of the excluded volume, with higher u0 leading to an adsorption transition at higher ɛ. Finally, we consider the effect of translocation across different size cavities. We find that the kinetics for translocation into a smaller cavity speeds up while translocation to a larger cavity slows down with increasing ɛ due to higher surface contact under stronger confinement. 
    more » « less
  3. Peptide surfactants (PEPS) are studied to capture and retain rare earth elements (REEs) at air–water interfaces to enable REE separations. 
    more » « less
    Free, publicly-accessible full text available November 27, 2025
  4. Motile bacteria play essential roles in biology that rely on their dynamic behaviours, including their ability to navigate, interact and self-organize. However, bacteria dynamics on fluid interfaces are not well understood. Swimmers adsorbed on fluid interfaces remain highly motile, and fluid interfaces are highly non-ideal domains that alter swimming behaviour. To understand these effects, we study flow fields generated byPseudomonas aeruginosaPA01 in the pusher mode. Analysis of correlated displacements of tracers and bacteria reveals dipolar flow fields with unexpected asymmetries that differ significantly from their counterparts in bulk fluids. We decompose the flow field into fundamental hydrodynamic modes for swimmers in incompressible fluid interfaces. We find an expected force-doublet mode corresponding to propulsion and drag at the interface plane, and a second dipolar mode, associated with forces exerted by the flagellum on the cell body in the aqueous phase that are countered by Marangoni stresses in the interface. The balance of these modes depends on the bacteria's trapped interfacial configurations. Understanding these flows is broadly important in nature and in the design of biomimetic swimmers. 
    more » « less
  5. Rare earth elements (REEs) are critical materials to modern technologies. They are obtained by selective separation from mining feedstocks consisting of mixtures of their trivalent cation. We are developing an all-aqueous, bioinspired, interfacial separation using peptides as amphiphilic molecular extractants. Lanthanide binding tags (LBTs) are amphiphilic peptide sequences based on the EF-hand metal binding loops of calcium-binding proteins which complex selectively REEs. We study LBTs optimized for coordination to Tb3+using luminescence spectroscopy, surface tensiometry, X-ray reflectivity, and X-ray fluorescence near total reflection, and find that these LBTs capture Tb3+in bulk and adsorb the complex to the interface. Molecular dynamics show that the binding pocket remains intact upon adsorption. We find that, if the net negative charge on the peptide results in a negatively charged complex, excess cations are recruited to the interface by nonselective Coulombic interactions that compromise selective REE capture. If, however, the net negative charge on the peptide is −3, resulting in a neutral complex, a 1:1 surface ratio of cation to peptide is achieved. Surface adsorption of the neutral peptide complexes from an equimolar mixture of Tb3+and La3+demonstrates a switchable platform dictated by bulk and interfacial effects. The adsorption layer becomes enriched in the favored Tb3+when the bulk peptide is saturated, but selective to La3+for undersaturation due to a higher surface activity of the La3+complex. 
    more » « less
    Free, publicly-accessible full text available December 24, 2025
  6. Porous materials possess numerous useful functions because of their high surface area and ability to modulate the transport of heat, mass, fluids, and electromagnetic waves. Unlike highly ordered structures, disordered porous structures offer the advantages of ease of fabrication and high fault tolerance. Bicontinuous interfacially jammed emulsion gels (bijels) are kinetically trapped disordered biphasic materials that can be converted to porous materials with tunable features. Current methods of bijel fabrication result in domains that are micrometers or larger, and non-uniform in size, limiting their surface area, mechanical strength, and interaction with electromagnetic waves. In this work, scalable synthesis of bijels with uniform and sub-micrometer domains is achieved via a two-step solvent removal process. The resulting bijels are characterized quantitatively to verify the uniformity and sub-micrometer scale of the domains. Moreover, these bijels have structures that resemble the microstructure of the scale of the white beetle Cyphochilus. We find that such bijel films with relatively small thicknesses (<150 μm) exhibit strong solar reflectance as well as high brightness and whiteness in the visible range. Considering their scalability in manufacturing, we believe that VIPS-STRIPS bijels have great potential in large-scale applications including passive cooling, solar cells, and light emitting diodes (LEDs). 
    more » « less
  7. Abstract Bi‐continuous jammed emulsion (bijel) membrane reactors, integrating simultaneous reaction and separation, offer a promising avenue for enhancing membrane reactor processes. In this study, we present a comprehensive macroscopic‐scale physicochemical model for tubular bijel membrane reactors and a numerical solution strategy for solving the governing partial differential equations. The model captures the co‐continuous network of two immiscible phases stabilized by nanoparticles at the liquid–liquid interface. We present the derivation of model equations and an efficient numerical solution strategy. The model is validated with experimental results from a conventional enzymatic biphasic membrane reactor for oleuropein hydrolysis, already reported in the literature. Simulation results indicate accurate prediction of reactor behavior, highlighting the potential superiority of bijel membrane reactors over current technologies. This research contributes a valuable tool for scale‐up, design, and optimization of bijel membrane reactors, filling a critical gap in this emerging field. 
    more » « less